Microcalorimetric studies on chemical oscillation of microgels.
نویسندگان
چکیده
By use of isothermal titration calorimetry (ITC) and ultrasensitive differential scanning calorimetry (US-DSC), we have investigated the energy change in the periodic swelling-to-deswelling of thermally sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels containing ruthenium(II) tris(2,2'-bipyridine) (Ru(bpy)3) which is a catalyst for Belousov-Zhabotinsky (BZ) reaction. As temperature increases, the induction period and oscillation period of BZ reaction decrease because the reaction rate increases. However, the oscillation disappears at a temperature above the lower critical solution temperature (LCST) of the microgels since Ru(bpy)3 is trapped in the microgels and cannot react with BZ substrates. As microgel size increases or the cross-linking density decreases, the restriction of polymer networks on Ru(bpy)3 decreases, so that Ru(bpy)3 can readily contact with BZ substrates, leading the oscillation amplitude to increase. In addition, the so-called transient chaos occurs at a low stirring speed, and it wanes with the increasing stirring speed. All the facts indicate that the contact between Ru(bpy)3 and BZ substrates determines the oscillation of the microgels.
منابع مشابه
Directed self-assembly of polypeptide-engineered physical microgels for building porous cell-laden hydrogels.
A novel approach to build porous cell-laden hydrogels through the self-assembly of coiled-coil polypeptides on the surface of physical microgels was developed. Both the extracellular microenvironments of pores and physical microgels within assembled constructs could be tailored simultaneously by tuning the polypeptide and morphological features of microgels.
متن کاملUltrasoft, highly deformable microgels.
Microgels are colloidally stable, hydrogel microparticles that have previously been used in a range of (soft) material applications due to their tunable mechanical and chemical properties. Most commonly, thermo and pH-responsive poly(N-isopropylacrylamide) (pNIPAm) microgels can be fabricated by precipitation polymerization in the presence of the co-monomer acrylic acid (AAc). Traditionally pNI...
متن کاملOligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: Polymerization, characterization and variation of particle deformability
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show ...
متن کاملInteraction of gold nanoparticles with thermoresponsive microgels: influence of the cross-linker density on optical properties.
The interaction of spherical gold nanoparticles (Au-NPs) with microgels composed of chemically cross-linked poly-(N-isopropylacrylamide) is reported. Simple mixing of the two components leads to adsorption of the gold particles onto the microgels. Different loading densities can be achieved by varying the ratio of gold particles to microgel particles. The adsorption of gold nanoparticles is ana...
متن کاملBioreducible nanogels/microgels easily prepared via temperature induced self-assembly and self-crosslinking.
A facile temperature induced self-assembly and self-crosslinking method has been developed for preparing bioreducible nanogels/microgels without need of any stabilizer, catalyst or additional crosslinking agent. The size of formed nanogels/microgels can be easily tuned via the polymer concentration.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 19 شماره
صفحات -
تاریخ انتشار 2009